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I choose problem 1,3,4,7,8.

1 Divide and Conquer
1.1 Algorithm in natural language

Assume the two databases are A and B, A(i) and B(i) are the ith smallest value each
contains.

First we compare the median of A and B. Let k = ⌊n/2⌋, so A(k) and B(k) are
the median of A and B. If A(k) < B(k) (as all values are distinct, no A(k) == B(k)
case; the case A(k) > B(k) is the same if we exchange A and B), then the median of
combined 2n values must be in A[k,n] or B[1,k]. Because A(k) is greater than the first
k − 1 elements in A, B(k) > A(k), so the last k elements of B are also greater than the
first k − 1 elements of A. As a result, the median of 2n values couldn’t lie in A[1,k-1],
neither B[k+1,n].

So, take A’ = A[k,n] as the new A, B’ = B[1,k] as the new B, but we can’t delete
the databases, the ith smallest value in A’ is the (i + k)th smallest value in A, the ith

smallest value in B’ is the ith smallest value in B, recursively we will get the median of
combined 2n values.

1.2 Algorithm in pseudo-code
We define algorithm MEDIAN(n,a,b) that input integers n,a and b and output the

median of the union of the two parts A[a+1,b+n] and B[b+1,b+n].

MEDIAN(n, a, b)

1 if n == 1
2 return min(A(a+k),B(b+k))
3 k = ⌊n/2⌋
4 if A(a + k) < B(b + k)
5 return MEDIAN(k, a + k, b)
6 else
7 return MEDIAN(k, a, b + k)

To find the median of 2n elements in A and B, we just call MEDIAN(n,0,0).
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1.3 Subproblem reduction graph

MEDIAN(n, 0, 0)

MEDIAN(⌊n/2⌋, ⌊n/2⌋, 0) MEDIAN(⌊n/2⌋, 0, ⌊n/2⌋)

MEDIAN(1, i, j) = min(A(i), B(j))

A[⌊n/2⌋] < B[⌊n/2⌋] A[⌊n/2⌋] > B[⌊n/2⌋]

1.4 Correctness of the algorithm
We can use loop invariant to prove it.
Initialization: At the beginning, we call MEDIAN(n,0,0) to find the median of the

union of A[1,n] and B[1,n], say it’s M1. As described in the section 1.1, we know M2 =
MEDIAN(⌊n/2⌋, ⌊n/2⌋, 0), the median of the union of A[⌊n/2⌋, n] and B[1, ⌊n/2⌋], is
also the median of the union of A[1,n] and B[1,n], that’s to say M2 == M1.

Maintenance: We take A′ = A[⌊n/2⌋, n] as the new A, B′ = B[1, ⌊n/2⌋] as the new
B, after calling M3 = median(⌊n/4⌋, ⌊n/4⌋, 0), we can say M3 == M2, so M3 == M1.

Termination: After calling MEDIAN m(m is big enough) times, only A(i) and B(j)
left, the median of them is Mm = min(A(i), B(j)), as Mm == Mm−1 == ... == M1,
Mm is the final global median.

1.5 Complexity of the algorithm
Let T(n) be the number of queries asked by our algorithm, each time we call the

function, we ask 2 queries in line 4, after that, half elements are ”eliminated”, so we
have T (n) = T (⌊n/2⌋) + 2. Therefore T (n) = 2⌊logn⌋ = O(logn).

3 Divide and Conquer
3.1 Algorithm in natural language

In the textbook, we can find the inversions while merging two sub-sorted array,
because their conditions are the same. When i < j and ai > aj, aj should be in front
of ai and (ai, aj) is a inversion, so we do two things in one merge. But when counting
significant inversions, we can’t do these in the same time, because ai > aj doesn’t mean
ai > 3aj.
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Don’t worry, we can do it in two merges, one for sorting, one for finding significant
inversions.The new algorithm is very similar to the one in textbook, so let’s go straight
to section 3.2 to see the pseudo-code.

3.2 Algorithm in pseudo-code
We define algorithm SORT-AND-COUNT(A) that input an unsorted array A and

output the number of significant inversions in original A and the sorted array A.

MERGE-AND-COUNT(L,R)

1 RC = 0; i = 0; j = 0;
2 for k = 0 to ||L||+ ||R|| − 1
3 if L[i] > R[j]
4 A[k] = R[j]
5 j++
6 else
7 A[k] = L[i]
8 i++
9 i = 0; j = 0;

10 for k = 0 to ||L||+ ||R|| − 1
11 if L[i] > 3R[j]
12 RC = RC + length[L] - i
13 j++
14 else
15 i++
16 return (RC,A)

SORT-AND-COUNT(A)

1 if A has one element
2 return (0,A)
3 else
4 Divide A into two sub-sequences L and R
5 (RCL,L) = SORT-AND-COUNT(L)
6 (RCR,R) = SORT-AND-COUNT(R)
7 (C,A) = MERGE-AND-COUNT(L,R)
8 return (RC = RCL +RCR + C,A)

3.3 Subproblem reduction graph
SAC(A) is short for SORT-AND-COUNT(A).
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SAC(A[1, n])

SAC(A[1, ⌊n/2⌋]) SAC(A[⌈n/2⌉, n])

A[i]

SAC(A[i]) return (0, A[i])

leaves :

3.4 Correctness of the algorithm
As we can see in section 3.2, the new MERGE-AND-COUNT just add an extra

merge based on the old MERGE-AND-COUNT in the textbook, so it is obvious that
new algorithm can sort array correctly.

As for finding all significant inversions, suppose we are going to merge L[1, n1] and
R[1, n1] which are already sorted. If L[i] > 3R[j], then (L[i], R[j]) is a significant
inversion, as all L[i + 1, n1] is greater than L[i], so L[i + 1, n1] together with R[j] are
significant inversions too. Thus, the number of significant inversions is n1 − i.

So, recursively we can find all significant inversions.

3.5 Complexity of the algorithm
Let T(n) be the time of my algorithm, as there are an extra merge in the new

MERGE-AND-COUNT algorithm, so the MERGE-AND-COUNT time is O(2n), we
get T (n) = 2T (n/2) +O(2n), thus T (n) = O(nlgn).

4 Divide and Conquer
4.1 Algorithm in natural language

Given the complete binary tree T, let t be the root of T, tL and tR be the left and
right child of t.

If t < tL and t < tR, t is one of local minimum node; if not, choose one of child that
less than t, say tL(or tR), check if tL’s 2 children are less than t, if so, tL is the local
minimum node; if not, recursively check one of tL’s child.

If we can’t find a local minimum node among T’s internal nodes, assume we reach
X which is greater than its left child XL, and XL is a leaf node, as a result, XL is the
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local minimum node.
So, we can always find a local minimum node.

4.2 Algorithm in pseudo-code
We define algorithm FIND-LOCAL-MINIMUM(X) that input a node X and output

one of local minimum node in X’s subtree.

FIND-LOCAL-MINIMUM(X)

1 if X has children
2 Let XL and XR be the left and right child of X
3 if X < XL and X < XR

4 return X
5 elseif X > XL

6 return FIND-LOCAL-MINIMUM(XL)
7 elseif X > XR

8 return FIND-LOCAL-MINIMUM(XR)
9 else

10 return X

To find the local minimum node of T, we just call FIND-LOCAL-MINIMUN(T.root).

4.3 Subproblem reduction graph
FLM(X) is short for FIND-LOCAL-MINIMUM(X).

FLM(T.root)

FLM(T.root.left) FLM(T.root.right)

x
FLM(x) return x

leaves :

T.root > T.root.left T.root > T.root.right
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4.4 Correctness of the algorithm
We can use loop invariant to prove it.
Initialization: At the beginning, if T.root < T.root.left and T.root < T.root.right,

T itself is a local minimum node.
Maintenance: Otherwise, claim that at any point in the execution of the algorithm,

the parent (if any) of X has a greater value than X itself. Thus, X only need to compare
with XL and XR, if X < XL and X < XR, X is a local minimum node, if not, go to line
6 or line 8 recursively.

Termination: If algorithm doesn’t return among internal nodes, it reaches leaf
node X, so the parent of X has a greater value than X, thus, X is a local minimum node.

So, the algorithm can always find a local minimum node.

4.5 Complexity of the algorithm
As we can see in the section 4.3, each time we go to one of X’s subtree and do 3

probes, as the longest path is the height of the tree, say log2n. so we do at most 3log2n
probes, so the complexity is O(logn).

7 Divide and Conquer
7.1 Implementation of the Sort-and-Count algorithm

I implemented the Sort-and-Count algorithm in Python3.
1 # −*− coding : utf−8 −*−
2

3 import time
4

5 INF = 100001
6 i n v e r s i o n s = 0
7

8 de f MergeAndCount (A, p , q , r ) :
9 g l oba l INF

10 g l oba l i n v e r s i o n s
11 L = A[ p : q+1]
12 L . append (INF) #add a s e n t i n e l card
13 R = A[ q+1: r+1]
14 R. append (INF) #add a s e n t i n e l card
15 i = 0
16 j = 0
17 f o r k in range (p , r + 1) :
18 i f L [ i ] < R[ j ] :
19 A[ k ] = L [ i ]
20 i = i + 1
21 e l s e :
22 A[ k ] = R[ j ]
23 j = j + 1
24 i f L [ i ] != INF :
25 i n v e r s i o n s = i nv e r s i o n s + len (L) − i − 1
26

27 de f SortAndCount (A, p , r ) :
28 i f p < r :
29 q = in t ( ( p + r ) / 2)
30 SortAndCount (A, p , q )
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31 SortAndCount (A, q + 1 , r )
32 MergeAndCount (A, p , q , r )
33

34 i f __name__ == ”__main__” :
35 Q5 = open ( ’Q5 . txt ’ , encoding = ’ utf−8 ’ )
36 data = [ i n t ( x ) f o r x in Q5 ]
37 Q5. c l o s e ( )
38 s t a r t = time . c l o ck ( )
39 SortAndCount ( data , 0 , l en ( data ) −1 )
40 end = time . c l o ck ( )
41 pr in t ( ”number o f i n v e r s i o n s :%d\ntime:% f s ”%( inve r s i on s , end−s t a r t ) )

The number of inversions in Q5.txt is 2500572073, running time is 1.658 s

7.2 Quick-Sort version
Yes! Quick-Sort can also count inversions. Typical Quick-Sort is unstable, so it can’t

count inversions, once we make it stable, it can.
1 # −*− coding : utf−8 −*−
2

3 import time
4

5 i n v e r s i o n s = 0
6

7 de f Pa r t i t i on (A, p , r ) :
8 g l oba l i n v e r s i o n s
9 tmp = [ 0 ] * ( r−p+1)

10 pivot = A[ p ]
11 k = 0
12 f o r i in range (p+1, r+1) :
13 i f A[ i ] < p ivot : #l e s s than p ivot
14 tmp [ k ] = A[ i ]
15 i n v e r s i o n s = i nv e r s i o n s + i − k − p
16 k = k + 1
17 tmp [ k ] = pivot
18 ans = k + p
19 k = k + 1
20 f o r i in range (p+1, r+1) :
21 i f A[ i ] > p ivot : #g r ea t e r than p ivot
22 tmp [ k ] = A[ i ]
23 k = k + 1
24 k = 0
25 f o r i in range (p , r+1) : #copy back
26 A[ i ] = tmp [ k ]
27 k = k + 1
28 re turn ans
29

30 de f QuickSortAndCount (A, p , r ) :
31 i f p < r :
32 q = Par t i t i on (A, p , r )
33 QuickSortAndCount (A, p , q−1)
34 QuickSortAndCount (A, q + 1 , r )
35

36 i f __name__ == ”__main__” :
37 Q5 = open ( ’Q5 . txt ’ , encoding = ’ utf−8 ’ )
38 data = [ i n t ( x ) f o r x in Q5 ]
39 Q5. c l o s e ( )
40 s t a r t = time . c l o ck ( )
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41 QuickSortAndCount ( data , 0 , l en ( data ) −1 )
42 end = time . c l o ck ( )
43 pr in t ( ”number o f i n v e r s i o n s :%d\ntime:% f s ”%( inve r s i on s , end−s t a r t ) )

The number of inversions in Q5.txt is 2500572073, running time is 2.266 s. it is
slower than Merge-Sort version, although the complexity is still O(nlgn), it has to scan
the array 3 times in Partition step, and it isn’t a in-place sort.

8 Divide and Conquer
Here is my implementation of Find-Closest-Pair in Python3.

1 # −*− coding : utf−8 −*−
2 ”””
3 Created on Tue Oct 6 16 : 09 : 40 2015
4

5 @author : c z l
6 ”””
7 import copy
8 import math
9

10 INF = 10000000 # max o f the ** square ** o f the d i s t anc e
11

12 c l a s s Point :
13 x = 0
14 y = 0
15 de f __init__( s e l f , x , y ) :
16 s e l f . x = x
17 s e l f . y = y
18

19 # ca l c u l a t e the square o f the d i s t ance o f po int i and po int j
20 de f GetDistanceSquare ( i , j ) :
21 re turn ( i . x − j . x ) * ( i . x − j . x ) + ( i . y − j . y ) * ( i . y − j . y )
22

23 de f F indCloses tPa i r ( s , e ) :
24 g l oba l INF
25 i f e − s < 3 : # i f l e s s than 3 points , j u s t brute f o r c e
26 local_min1 = [ INF , 0 , 0 ]
27 f o r i in range ( s , e ) :
28 f o r j in range ( i + 1 , e + 1) :
29 i f GetDistanceSquare ( dataX [ i ] , dataX [ j ] ) < local_min1 [ 0 ] :
30 local_min1 [ 0 ] = GetDistanceSquare ( dataX [ i ] , dataX [ j ] )
31 local_min1 [ 1 ] = dataX [ i ]
32 local_min1 [ 2 ] = dataX [ j ]
33 re turn local_min1
34 e l s e : # e l s e d i v id e and conquer
35 m = in t ( ( s + e ) / 2)
36 l = FindCloses tPa i r ( s , m)
37 r = FindCloses tPa i r (m + 1 , e )
38 local_min2 = [ ]
39 i f l [ 0 ] < r [ 0 ] :
40 local_min2 = copy . deepcopy ( l )
41 e l s e :
42 local_min2 = copy . deepcopy ( r )
43

44 Y = [ ]
45 median = dataX [m]
46
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47 # c o l l e c t po in t s with in the 2 local_min2 [ 0 ] s t r i p
48 # already so r t ed by y
49 f o r i in dataY :
50 i f i . x >= median . x − local_min2 [ 0 ] and i . x <= median . x +

local_min2 [ 0 ] :
51 Y. append ( i )
52 f o r i in range (0 , l en (Y) ) :
53 f o r j in range ( i + 1 , i + 7) : # only c a l c u l a t e next 7 po in t s
54 i f j >= len (Y) :
55 break
56 i f GetDistanceSquare (Y[ i ] , Y[ j ] ) < local_min2 [ 0 ] :
57 local_min2 [ 0 ] = GetDistanceSquare (Y[ i ] , Y[ j ] )
58 local_min2 [ 1 ] = Y[ i ]
59 local_min2 [ 2 ] = Y[ j ]
60 re turn local_min2
61

62 i f __name__ == ”__main__” :
63 Q8 = open ( ’Q8 . txt ’ , encoding = ’ utf−8 ’ )
64 dataX = [ ]
65 f o r l i n e in Q8 :
66 v = l i n e . s p l i t ( )
67 dataX . append ( Point ( i n t ( v [ 0 ] ) , i n t ( v [ 1 ] ) ) )
68 Q8. c l o s e ( )
69 dataY = copy . deepcopy ( dataX )
70 dataX . s o r t ( key = lambda p : p . x ) # pre−so r t ed by x
71 dataY . s o r t ( key = lambda p : p . y ) # pre−so r t ed by y
72 ans = FindCloses tPa i r (0 , l en ( dataX ) − 1)
73 pr in t ( ’The C lo s e s t Pair i s (%d,%d)−−(%d,%d) \nThe d i s t anc e i s %f ’%(ans

[ 1 ] . x , ans [ 1 ] . y , ans [ 2 ] . x , ans [ 2 ] . y , math . s q r t ( ans [ 0 ] ) ) )

Example input(Q8.txt, each line has 2 numbers indicate a point (x,y)):
43 67
82 35
81 37
70 98
71 94
24 61
21 34
5 2
67 29
42 76

Example output:
The Closest Pair is (81,37)–(82,35)
The distance is 2.236068

Let T (n) be the running time of each recursive step and T ′(n) be the running time
of the entire algorithm. At the beginning, we sort the data by x and by y, so T ′(n) =
T (n) +O(nlgn), and

T (n) =

{
2T (n/2) +O(n) if n > 3

O(1) if n ≤ 3

Thus, T (n) = O(nlgn) and T ′(n) = O(nlgn).
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