Assignment 1
Algorithm Design and Analysis

bitjoy.net
October 7, 2015

I choose problem 1,3,4,7,8.

1 Divide and Conquer

1.1 Algorithm in natural language

Assume the two databases are A and B, A(i) and B(i) are the 7" smallest value each
contains.

First we compare the median of A and B. Let £k = |n/2], so A(k) and B(k) are
the median of A and B. If A(k) < B(k) (as all values are distinct, no A(k) == B(k)
case; the case A(k) > B(k) is the same if we exchange A and B), then the median of
combined 2n values must be in A[kn] or B[1,k]. Because A(k) is greater than the first
k — 1 elements in A, B(k) > A(k), so the last k elements of B are also greater than the
first £ — 1 elements of A. As a result, the median of 2n values couldn’t lie in A[1,k-1],
neither Bk+1,n].

So, take A’ = Alk,n] as the new A, B’ = BJ[1,k] as the new B, but we can’t delete
the databases, the i smallest value in A’ is the (i + k)™ smallest value in A, the ™"
smallest value in B’ is the i** smallest value in B, recursively we will get the median of
combined 2n values.

1.2 Algorithm in pseudo-code

We define algorithm MEDIAN(n,a,b) that input integers n,a and b and output the
median of the union of the two parts Ala+1,b+n| and B[b+1,b+n].

MEDIAN(n, a,b)

1 ifn==1

2 return min(A(a+k),B(b+k))
3 k=|n/2]

4 if A(a+ k) < B(b + k)

5 return MEDIAN(k, a + k, b)
6 else

7 return MEDIAN(k, a, b + k)

To find the median of 2n elements in A and B, we just call MEDIAN(n,0,0).

http://bitjoy.net

1.3 Subproblem reduction graph

MEDIAN (n,0,0)

Alln/2)] < B[Ln/ZJ/ \4&71/%1 > Bln/2]]

MEDIAN([n/2], |n/2],0) MEDIAN([n/2],0, |n/2])

/\

\
~ v

. MEDIAN(l,z,j) min(A(i), B(5))

1.4 Correctness of the algorithm

We can use loop tnwvariant to prove it.

Initialization: At the beginning, we call MEDIAN(n,0,0) to find the median of the
union of A[1,n] and B[1,n], say it’s M;. As described in the section 1.1, we know My =
MEDIAN(|n/2],|n/2],0), the median of the union of A[|[n/2],n| and B[1, |n/2]], is
also the median of the union of A[1,n] and B[1,n], that’s to say My == M;.

Maintenance: We take A" = A[|n/2], n] as the new A, B’ = B[, |[n/2]] as the new
B, after calling M3 = median(|n/4], |n/4],0), we can say Ms == M,, so M3 == M.

Termination: After calling MEDIAN m(m is big enough) times, only A(i) and B(j)
left, the median of them is M,, = min(A(i), B(j)), as M,, == M,y == ... == M,
M, is the final global median.

1.5 Complexity of the algorithm

Let T(n) be the number of queries asked by our algorithm, each time we call the
function, we ask 2 queries in line 4, after that, half elements are ”eliminated”, so we
have T'(n) = T'(|n/2]) + 2. Therefore T'(n) = 2|logn| = O(logn).

3 Divide and Conquer

3.1 Algorithm in natural language

In the textbook, we can find the inversions while merging two sub-sorted array,
because their conditions are the same. When ¢ < j and a; > a;, a; should be in front
of a; and (a;,a;) is a inversion, so we do two things in one merge. But when counting
significant inversions, we can’t do these in the same time, because a; > a; doesn’t mean
a; > 3a;.

Don’t worry, we can do it in two merges, one for sorting, one for finding significant
inversions. The new algorithm is very similar to the one in textbook, so let’s go straight
to section 3.2 to see the pseudo-code.

3.2 Algorithm in pseudo-code

We define algorithm SORT-AND-COUNT(A) that input an unsorted array A and
output the number of significant inversions in original A and the sorted array A.

MERGE-AND-COUNT(L, R)

1 RC=0;i=0;j=0;

2 fork=0to||L|]|+]|R||-1
3 if L[i] > R]j]

4 Alk] = R]j]

5 i+

6 else

7 Alk] = L[j]

8 i++

9 i=0;j=0;
10 fork =0to||L||+||R|]|—1
11 if L[i] > 3R]
12 RC = RC + length[L] - i
13 i+
14 else
15 i++

16 return (RC,A)

SORT-AND-COUNT(A)

1 if A has one element

2 return (0,A)

else
Divide A into two sub-sequences L and R
(RCp,L) = SORT-AND-COUNT(L)
(RCg,R) = SORT-AND-COUNT(R)
(C,A) = MERGE-AND-COUNT(L,R)
return (RC = RCp + RCr + C,A)

O 1 O Ut = W

3.3 Subproblem reduction graph
SAC(A) is short for SORT-AND-COUNT(A).

SAC(A[L, [n/2]]) SAC(A[[n/2],n])

! ! !
! ! !
sz ~ ~

wes: @ @ @ @

SAC(A[i]) return (0, Ali])

3.4 Correctness of the algorithm

As we can see in section 3.2, the new MERGE-AND-COUNT just add an extra
merge based on the old MERGE-AND-COUNT in the textbook, so it is obvious that
new algorithm can sort array correctly.

As for finding all significant inversions, suppose we are going to merge L[1,n;] and
R[1,n4] which are already sorted. If L[i] > 3R[j], then (L[i], R[j]) is a significant
inversion, as all L[i + 1,n,] is greater than L[i], so L[i + 1,n;] together with R[j] are
significant inversions too. Thus, the number of significant inversions is n; — 1.

So, recursively we can find all significant inversions.

3.5 Complexity of the algorithm

Let T(n) be the time of my algorithm, as there are an extra merge in the new
MERGE-AND-COUNT algorithm, so the MERGE-AND-COUNT time is O(2n), we
get T'(n) = 2T (n/2) + O(2n), thus T'(n) = O(nlgn).

4 Divide and Conquer

4.1 Algorithm in natural language

Given the complete binary tree T, let t be the root of T, t;, and tz be the left and
right child of t.

Ift <ty and t < tg, t is one of local minimum node; if not, choose one of child that
less than t, say ty(or tg), check if ¢;’s 2 children are less than t, if so, ¢ is the local
minimum node; if not, recursively check one of ¢, ’s child.

If we can’t find a local minimum node among T’s internal nodes, assume we reach
X which is greater than its left child X, and X, is a leaf node, as a result, X, is the

local minimum node.
So, we can always find a local minimum node.

4.2 Algorithm in pseudo-code

We define algorithm FIND-LOCAL-MINIMUM(X) that input a node X and output
one of local minimum node in X’s subtree.

FIND-LOCAL-MINIMUM(X)

1 if X has children
Let X and Xg be the left and right child of X
if X < X;and X < Xpg

return X
elseif X > X

return FIND-LOCAL-MINIMUM(X7)
elseif X > Xp

return FIND-LOCAL-MINIMUM(XR)

(\]

else

O © 00O Tk W

—_

return X

To find the local minimum node of T, we just call FIND-LOCAL-MINIMUN(T root).

4.3 Subproblem reduction graph
FLM(X) is short for FIND-LOCAL-MINIMUM(X).

FLM(T.root)
T.root > T.root.left T.root > T.root.right

FLM(T.root. left) Q FLM(T.root.right)

/N /N

eaves: @ @ @ @

FLM (x) return x

4.4 Correctness of the algorithm

We can use loop invariant to prove it.

Initialization: At the beginning, if T'.root < T.root.left and T.root < T.root.right,
T itself is a local minimum node.

Maintenance: Otherwise, claim that at any point in the execution of the algorithm,
the parent (if any) of X has a greater value than X itself. Thus, X only need to compare
with X and Xg, if X < X and X < Xg, X is a local minimum node, if not, go to line
6 or line 8 recursively.

Termination: If algorithm doesn’t return among internal nodes, it reaches leaf
node X, so the parent of X has a greater value than X, thus, X is a local minimum node.

So, the algorithm can always find a local minimum node.

4.5 Complexity of the algorithm

As we can see in the section 4.3, each time we go to one of X’s subtree and do 3
probes, as the longest path is the height of the tree, say logan. so we do at most 3logan
probes, so the complexity is O(logn).

7 Divide and Conquer

7.1 Implementation of the Sort-and-Count algorithm

I implemented the Sort-and-Count algorithm in Python3.
—*— coding: utf-8 —*—

3 import time

27

28

INF = 100001

inversions = 0

def MergeAndCount (A, p, q, r):
global INF
global inversions
L =A[p:q+1]
L.append (INF) #add a sentinel card
R = A[q+1:r+1]
R.append (INF) #add a sentinel card

i=0
ji=20
for k in range(p, r + 1):
if L[i] < R[j]:
Alk] = L[i]
i=1i+1
else:
AlK] = R[]
j=3+1
if L[i] != INF
inversions = inversions + len(L) — i — 1

def SortAndCount (A, p, r):
if p<or:

q = int ((p)/

b,

r 2)
SortAndCount (A, q)

32
33

34

40

2
3
1

5

if

name — 7 main :

SortAndCount (A, q + 1, 1)
MergeAndCount (A, p, q, r)

” .

Q5 = open(’'Q5.txt’, encoding = 'utf—8")
data = [int(x) for x in Q5]

Q5. close ()

start = time.clock ()

SortAndCount (data, 0, len(data) —1)

end = time. clock ()

print ("number of inversions:%d\ntime:%f s”%(inversions ,end—start))

The number of inversions in Q5.txt is 2500572073, running time is 1.658 s

7.2 Quick-Sort version

Yes! Quick-Sort can also count inversions. Typical Quick-Sort is unstable, so it can’t

count inversions, once we make it stable, it can.

1 # —*— coding: utf—-8 —*—

import time

inversions = 0

def

Partition (A, p, r):

global inversions

tmp = (0] * (r—p+1)

pivot = A[p]

k=0

for i in range(p+1, r+1):

if Ali] < pivot: #less than pivot

tmp (k] = A[i]
inversions = inversions + i — k — p
k=k+ 1

tmp[k] = pivot

ans = k + p

k=k+1

for i in range(p+1, r+1):

if A[i] > pivot: #greater than pivot
tmp k] = A[1]
k=%k+ 1
k=0
for i in range(p, r+1): #copy back
A[i] = tmp (K]
k=%k+ 1
return ans
def QuickSortAndCount(A, p, r):
if p<or:
q = Partition (A, p, 1)
QuickSortAndCount (A, p, gq—1)
QuickSortAndCount (A, g + 1, 1)
if mpname =— 7 main 7:
Q5 = open(’'Q5.txt’, encoding = 'utf—8")
data = [int(x) for x in Q5]
Q5. close ()
start = time.clock ()

11 QuickSortAndCount (data, 0, len(data) —1)
12 end = time. clock ()
13 print ("number of inversions:%d\ntime:%f s”%(inversions ,end—start))

The number of inversions in Q5.txt is 2500572073, running time is 2.266 s. it is
slower than Merge-Sort version, although the complexity is still O(nlgn), it has to scan
the array 3 times in Partition step, and it isn’t a in-place sort.

8 Divide and Conquer

Here is my implementation of Find-Closest-Pair in Python3.

1 # —*— coding: utf-8 —*—

2

Created on Tue Oct 6 16:09:40 2015

5 @author: czl
7999

7 import copy
s import math

10 INF = 10000000 # max of the **square** of the distance

12 class Point:

13 x =0

14 y =0

15 def _ init_ (self, x, y):
16 self .x = x

17 self .y =y

19 # calculate the square of the distance of point i and point j
def GetDistanceSquare (i, j):

N

21 return (i.x — j.x) * (i.x — j.x) + (i.y —j.y) * (i.y —j.y)
25 def FindClosestPair (s, e):

24 global INF

25 if e — s < 3: # if less than 3 points, just brute force

26 local_minl = [INF,0,0]

27 for i in range(s, e):

28 for j in range(i + 1, e + 1):

29 if GetDistanceSquare(dataX[i], dataX[j]) < local minl[0]:
30 local_minl [0] = GetDistanceSquare (dataX[i], dataX[j])
31 local minl [1] = dataX[i]

32 local _minl [2] = dataX[j]

33 return local minl

34 else: # else divide and conquer

35 m= int((s +e) / 2)

36 1 = FindClosestPair (s, m)

37 r = FindClosestPair(m + 1, e)

38 local min2 = []

39 if 1[0] < r[0]:

10 local _min2 = copy.deepcopy (1)

41 else:

42 local _min2 = copy.deepcopy(r)

13

14 Y = []

15 median = dataX [m]

if

collect points within the 2local min2[0] strip
already sorted by y
for i in dataY:
if i.x >= median.x — local_min2[0] and i.x <= median.x +
local _min2[0]:
Y.append (i)
for i in range(0, len(Y)):
for j in range(i + 1,
if j >= len(Y):
break
if GetDistanceSquare(Y[i], Y[j]) < local min2[0]:
local _min2[0] = GetDistanceSquare(Y[i], Y[j])
local _min2[1] = Y][i]
local_min2[2] = Y][j]
return local min2

i + 7): # only calculate next 7 points

”

__name — ~main 7
Q8 = open(’'Q8.txt’, encoding = 'utf-8")
dataX = []

for line in Q8:
v = line.split ()
dataX .append (Point (int (v[0]), int(v[1])))
Q8. close ()
dataY = copy.deepcopy (dataX)
dataX.sort (key = lambda p: p.x) # pre—sorted by x
dataY .sort (key = lambda p: p.y) # pre—sorted by y
ans = FindClosestPair (0, len (dataX) — 1)
print ("The Closest Pair is (%d,%d)——(%d,%d)\nThe distance is %f’%(ans
[1].x, ans[1l].y, ans[2].x, ans[2].y, math.sqrt(ans[0])))

Example input(Q8.txt, each line has 2 numbers indicate a point (x,y)):
43 67
82 35
81 37
70 98
71 94
24 61
21 34
o2
67 29
42 76

Example output:
The Closest Pair is (81,37)—(82,35)
The distance is 2.236068

Let T'(n) be the running time of each recursive step and 7’(n) be the running time

of the entire algorithm. At the beginning, we sort the data by x and by y, so T"(n) =
T(n) + O(nlgn), and

T(n) = 2T (n/2) +O(n) ifn >3
Yo if n <3

Thus, T'(n) = O(nlgn) and T"(n) = O(nlgn).

