Assignment 2
Algorithm Design and Analysis

bitjoy.net
October 23, 2015

I choose problem 1,2,5,6.

1 Money robbing

1.1 Algorithm description

Suppose there are n houses, Ali] is the money stashed in #** house. For each house,
we have two choices, rob it or not. Let S[i][j] be the sum of money robbed from first i
houses, while the i house’s status is j(1 for being robbed, 0 for not).

If we rob the i house, the (i — 1) house can’t be robbed, so Sli][1]=S[i-1][0]+A[i].
Otherwise, we don’t rob the i house, the (i — 1)"* house can either be robbed or not,
so S[i][0]=max(S[i-1][0],S[i-1][1]).

At last, we choose the maximum of S[n|[0] and S[n|[1]. The DP equation shows
below:

Si][0] = 0 ifi=1
S[i[1] = Al ifi=1
S[i][0] = maz(S[i — 1][0], S[i — 1J[1]) ifi > 1
S[i)[1] = S[i — 1][0] + Ali] ifi>1

To summarize, we have the following algorithm.

MONEY-ROBBING(A)

1 S[1][0]=0; S[A][A]=A[1];

2 fori=2ton

3 S[i][0]=max(S[i-1][0],S[i-1][1])
4 S[i][1]=S[i-1][0]+A[i]

5 return max(S[n|[0],S[n][1])

1.2 Correctness of the algorithm

We can use loop tnvariant to prove it.

Initialization: When i=1, there is only one house, if we rob it, money is S[1][1]=A[1],
if not, S[1][0]=0, so the maximum amount of money we can rob is max(S[1][0],S[1][1])=A[1].

Maintenance: Given the maximum amount of money robbed from the first i-1
houses, say S[i-1][0] and S[i-1]{1]. For the " house, if we rob it, the (i — 1) house

http://bitjoy.net

can’t be robbed, so the money robbed is S[n-1][1]+Al[i]; if we don’t rob it, the (i — 1)
house can either be robbed or not, so the money robbed is max(S[i-1][0],S[i-1][1]). The
maximum amount of money robbed so far is max(S[i][0],S[i][1]), so the algorithm holds
for 4.

Termination: When i=n, S[n|[0] means the maximum amount of money robbed
from n houses and n'" house wasn’t robbed; S[n][1] means the maximum amount of
money robbed from n houses and n'* house was robbed. So, the global maximum is

max(S[n][0],S[n][1]).

1.3 Complexity of the algorithm

According to the pseudo-code, there is only one for loop, so the time complexity is
O(n).

The size of array S is n X 2, so the space complexity is O(n). As S[i][j] only needs
S[i-1][j], only four variables(S[i-1][0],S[i-1][1],S[i][0],S[i][1]) are necessary, so the space
complexity can be optimized to O(1).

1.4 What if all houses are arranged in a circle?

If all houses are arranged in a circle, the first and the last house can’t be robbed at
the same night, so we rob either from 1 to n-1 or from 2 to n.

CIRCLE-ROBBING(A)

1 B=A[l,..n-1]; C=A2,...,n];

2 max1=MONEY-ROBBING(B)
3 max2=MONEY-ROBBING(C)
4

return max(max1,max2)

The complexity is the same as MONEY-ROBBING's.

2 Minimum path sum

2.1 Algorithm description

In order to simplify the problem, we change the triangle’s shape like this:

2
O)

= 6 ©® T
4 1 8 3 4 1 8 3

As we can see, each number can only be reached from its left or right parent. For
example, number 5 can only be reached from number 3 or 4.

If we change the shape to the right picture, let Ali][j] be the number on ¢*
4" column, Sli][j] be the minimum path sum from top to number A[i][j].

If we reach A[i][j] from its left parent, S[i][j]=S[i-1][j-1]4+Ali][j]; if we reach Al[i][j]
from its right parent, S[i][j]=S[i-1][j]4+Ali][j]. So the minimum path sum from top to
Ali][j] should be min(S[i — 1][57 — 1], S[¢ — 1][7]) + A[4][J]-

At last, we choose the minimum path sum in the bottom row. The DP equation
shows below:

h row and

Slillg] = man(Sli = 1]1j = 1], S[i = 1][7]) + Al][]

th

Suppose the number triangle has r rows, ¢** row has ¢ numbers. To summarize, we

have the following algorithm.

MIN-PATH-SUM(A)

1S = Af[]
2 fori=2tor

3 forj=1toi

4 S[[j] = +oo

5 if A[i][j] has left parent

6 S[[j] = min(S[][j], SE-1]{-1] + A[i][i])
7 if A[i][j] has right parent

8 S[J[jl=min(S[][j], S[-1][5] + Af][])

9 ans = 400
10 forj=1tor
11 ans = min(ans, S[r][j])

12 return ans

2.2 Correctness of the algorithm

We can use loop invariant to prove it.

Initialization: When i=1, there is only one number, so the minimum path sum is
itself A[1][1].

Maintenance: Given the minimum path sum in (i — 1) row, for Ali][j] in i** row,
we can only reach it from its left or right parent, so the minimum path sum from top
to Ali][j] is min(S[i-1][j-1],S[i-1][j])+Al[i][j]. Algorithm holds for i*" ro

Termination: When we reach the bottom row, say i=r, we have work out all
minimum path sum from top to numbers in bottom row, so the global minimum path
sum is min’_1 S[r][j].

2.3 Complexity of the algorithm

According to the pseudo-code, from line 2 to 8, we scan all numbers once, from
line 10 to 11, we scan the bottom row once. If the size of triangle is n, then the time
complexity is O(n).

The size of array S equals to the size of triangle, so the space complexity is O(n).

5 Decoding

5.1 Algorithm description

Let array A be the encoded message, each digit Ali] can either be decoded alone or
be decoded together with its former digit A[i-1] except that A[i] is zero or A[i-1]A[i] >
26. Let BJi] be the number of ways to decode A[l,...,i], so there are 2 cases:

o if Afi] € [1,9], A[i] can be decoded alone, B[i] = BJ[i] + BJi-1];

o if A[i — 1JA[i] € [10,26], Afi-1] and A[i] can be decoded together, Bli| = BJi] +
Bli-2].

Note that 01" can’t be decoded to '1’. The DP equation shows below:
Bli| = Bli] + B[i — 1] if A[i] € [1,9]
Bli| = B[i] + B[i — 2] if A[i — 1][A[i] € [10, 26]

To summarize, we have the following algorithm.

DECODING(A)
1 BJ0]=B[l] =1
2 fori=2ton

3 Bli]=0

4 if Afi] € [1,9]

5 Bli] = BJ[i] + BJ[i-1]
6 if Ali — 1)A[i] € [10, 26]
7 Bli] = BJ[i] + BJ[i-2]
8 return Bin]

5.2 Correctness of the algorithm

We can use loop tnwvariant to prove it.

Initialization: When i=1, as A is a valid encoded message, A[1] # 0, so there is
only one decoding way, so B[1]=1.

Maintenance: Given the number of decoding ways in A[l,...,i-2] and A[l,...,i-1],
say Bli-2] and Bl[i-1]. As for A[i], if A[{] € [1,9], A[i] can be decoded alone, B[i] = BJ[i-1];
if A[i —1]Ai] € [10,26], A[i-1]A[i] can be decoded together, B[i] = BJ[i-2]. So we get the
number of decoding ways in A[l,....i], algorithm holds for i.

Termination: B[n| is the number of decoding ways in A.

5.3 Complexity of the algorithm

According to the pseudo-code, we scan the array A once, so the time complexity is
O(n).

The size of array B equals to the size of array A, so the space complexity is O(n).
As BJi] only needs Bli-2] and B[i-1], so the space complexity can be optimized to O(1).

6 Maximum profit of transactions

6.1 Problem description

Let array A store the daily price of the stock, we can complete at most two trans-
actions to get the maximum profit.

Note, two transactions can’t overlap, you must buy first, sell first and buy second,
sell second.

Let B[i] be the maximum profit of one transaction among A[l,....i], C[i] be the
maximum profit of another transaction among Ali,...,n], the maximum profit of two
transactions should be r?%lx{B [i] + C[i]}.

So, here is the problem, how to work out BJ[i] and C[i].

As for B[i], we scan array A from 1 to n, let variable min_price_so_far be the

minimum price so far and max_profit_so_far be the maximum profit of one transac-
tion so far. Obviously, we have max_profit_so_far = max{max_profit_so_far, Afi] —
min_price_so_far}. max_profit_so_far is exactly BIi].

As for C[i], we scan array A from n to 1, similarly, we have C[i] = max{maz_profit

_so_far,max_price_so_far — Alil}.

To summarize, we have the following algorithm.

FIND-MAX-PROFIT(A)

1

0 3 O Ut = W N

9
10
11
12
13
14

min_price_so_far = Al[l]
B[1]=0
fori=2ton
min_price_so_far = min{min_price_so_far, Ali]}
Bli] = max{Bl[i — 1], Ali] — min_price_so_far}
max_price_so_far = A[n]
Cln] =0
for i = n-1 downto 1
max_price_so_far = mazx{maz_price_so_far, Ali]}
Cli] = maz{C[i + 1], maz_price_so_far — Ali]}
global_maz_profit =0
fori=1ton
global_mazx _profit = max{global_max_profit, B[i]| + C[i]}
return global_max_profit

6.2 Implementation in C++

1 #include<iostream>
#include <fstream >

3 #include<algorithm>
using namespace std;

2

5

¢ const int MAXN = 100; // maz records

7 int A[MAXN]; // daily price of the stock
int B[MAXN|; // maz profit among A[1,...,i]
int C[MAXN]; // maz profit among Afi,...,n]

8

int main ()

{

freopen (”input.txt”, 7"r”, stdin);
int n = 1;
while (“scanf("%d”, &A[n]))
n+-+;
int min_price_so_far = A[1];
B[1] = 0;
for (int i = 2; i < n; i++)
{
min_price_so_far = min(min_price_so_far , A[i]);
B[i] = max(B[i — 1], A[i] — min_price_so_far);
}
int max_price_so_far = A[n — 1];

Cln — 1] = 0;

11

for (int i =n — 2; i >= 1; i——)
{

max_price_so_far = max(max_price_so_far, A[i]);
C[i] = max(C[i 4+ 1], max_price_so_far — A[i]);

int global_max_profit = 0;
for (int i = 1; i < n; i++)

global_max_profit = max(global_max_profit, B[i] + C[i]);
printf ("%d\n”, global_ max_profit);

return 0;

}

Sample input:
113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Sample output:

63
S A N
" NN S~ N\

Y VTN AV

" \S

60 T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The figure of the sample data is showed above, we buy stock on day 3 and sell it on
day 4 and buy it on day 7 and sell it on day 11, earning a profit of (105-85)+(106-63)=63.

According to the pseudo-code, there are three for loops, so the time complexity is
O(n). As we need extra arrays B and C, so the space complexity is O(n) too.

