
Assignment 2
Algorithm Design and Analysis

bitjoy.net

October 23, 2015

I choose problem 1,2,5,6.

1 Money robbing

1.1 Algorithm description

Suppose there are n houses, A[i] is the money stashed in ith house. For each house,
we have two choices, rob it or not. Let S[i][j] be the sum of money robbed from first i
houses, while the ith house’s status is j(1 for being robbed, 0 for not).

If we rob the ith house, the (i− 1)th house can’t be robbed, so S[i][1]=S[i-1][0]+A[i].
Otherwise, we don’t rob the ith house, the (i− 1)th house can either be robbed or not,
so S[i][0]=max(S[i-1][0],S[i-1][1]).

At last, we choose the maximum of S[n][0] and S[n][1]. The DP equation shows
below: 

S[i][0] = 0 if i = 1

S[i][1] = A[i] if i = 1

S[i][0] = max(S[i− 1][0], S[i− 1][1]) if i > 1

S[i][1] = S[i− 1][0] + A[i] if i > 1

To summarize, we have the following algorithm.

MONEY-ROBBING(A)

1 S[1][0]=0; S[1][1]=A[1];
2 for i = 2 to n
3 S[i][0]=max(S[i-1][0],S[i-1][1])
4 S[i][1]=S[i-1][0]+A[i]
5 return max(S[n][0],S[n][1])

1.2 Correctness of the algorithm

We can use loop invariant to prove it.
Initialization: When i=1, there is only one house, if we rob it, money is S[1][1]=A[1],

if not, S[1][0]=0, so the maximum amount of money we can rob is max(S[1][0],S[1][1])=A[1].
Maintenance: Given the maximum amount of money robbed from the first i-1

houses, say S[i-1][0] and S[i-1][1]. For the ith house, if we rob it, the (i − 1)th house
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can’t be robbed, so the money robbed is S[n-1][1]+A[i]; if we don’t rob it, the (i− 1)th

house can either be robbed or not, so the money robbed is max(S[i-1][0],S[i-1][1]). The
maximum amount of money robbed so far is max(S[i][0],S[i][1]), so the algorithm holds
for i.

Termination: When i=n, S[n][0] means the maximum amount of money robbed
from n houses and nth house wasn’t robbed; S[n][1] means the maximum amount of
money robbed from n houses and nth house was robbed. So, the global maximum is
max(S[n][0],S[n][1]).

1.3 Complexity of the algorithm

According to the pseudo-code, there is only one for loop, so the time complexity is
O(n).

The size of array S is n × 2, so the space complexity is O(n). As S[i][j] only needs
S[i-1][j], only four variables(S[i-1][0],S[i-1][1],S[i][0],S[i][1]) are necessary, so the space
complexity can be optimized to O(1).

1.4 What if all houses are arranged in a circle?

If all houses are arranged in a circle, the first and the last house can’t be robbed at
the same night, so we rob either from 1 to n-1 or from 2 to n.

CIRCLE-ROBBING(A)

1 B=A[1,...,n-1]; C=A[2,...,n];
2 max1=MONEY-ROBBING(B)
3 max2=MONEY-ROBBING(C)
4 return max(max1,max2)

The complexity is the same as MONEY-ROBBING’s.

2 Minimum path sum

2.1 Algorithm description

In order to simplify the problem, we change the triangle’s shape like this:

2
3© 4©

6 5© 7
4 1 8 3

=>

2
3© 4©
6 5© 7
4 1 8 3

As we can see, each number can only be reached from its left or right parent. For
example, number 5 can only be reached from number 3 or 4.

If we change the shape to the right picture, let A[i][j] be the number on ith row and
jth column, S[i][j] be the minimum path sum from top to number A[i][j].

If we reach A[i][j] from its left parent, S[i][j]=S[i-1][j-1]+A[i][j]; if we reach A[i][j]
from its right parent, S[i][j]=S[i-1][j]+A[i][j]. So the minimum path sum from top to
A[i][j] should be min(S[i− 1][j − 1], S[i− 1][j]) + A[i][j].

At last, we choose the minimum path sum in the bottom row. The DP equation
shows below:
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S[i][j] = min(S[i− 1][j − 1], S[i− 1][j]) + A[i][j]

Suppose the number triangle has r rows, ith row has i numbers. To summarize, we
have the following algorithm.

MIN-PATH-SUM(A)

1 S[1][1] = A[1][1]
2 for i = 2 to r
3 for j = 1 to i
4 S[i][j] = +∞
5 if A[i][j] has left parent
6 S[i][j] = min(S[i][j], S[i-1][j-1] + A[i][j])
7 if A[i][j] has right parent
8 S[i][j]=min(S[i][j], S[i-1][j] + A[i][j])
9 ans = +∞

10 for j = 1 to r
11 ans = min(ans, S[r][j])
12 return ans

2.2 Correctness of the algorithm

We can use loop invariant to prove it.
Initialization: When i=1, there is only one number, so the minimum path sum is

itself A[1][1].
Maintenance: Given the minimum path sum in (i− 1)th row, for A[i][j] in ith row,

we can only reach it from its left or right parent, so the minimum path sum from top
to A[i][j] is min(S[i-1][j-1],S[i-1][j])+A[i][j]. Algorithm holds for ith row.

Termination: When we reach the bottom row, say i=r, we have work out all
minimum path sum from top to numbers in bottom row, so the global minimum path
sum is minj=r

j=1S[r][j].

2.3 Complexity of the algorithm

According to the pseudo-code, from line 2 to 8, we scan all numbers once, from
line 10 to 11, we scan the bottom row once. If the size of triangle is n, then the time
complexity is O(n).

The size of array S equals to the size of triangle, so the space complexity is O(n).

5 Decoding

5.1 Algorithm description

Let array A be the encoded message, each digit A[i] can either be decoded alone or
be decoded together with its former digit A[i-1] except that A[i] is zero or A[i-1]A[i] >
26. Let B[i] be the number of ways to decode A[1,...,i], so there are 2 cases:

• if A[i] ∈ [1, 9], A[i] can be decoded alone, B[i] = B[i] + B[i-1];

• if A[i − 1]A[i] ∈ [10, 26], A[i-1] and A[i] can be decoded together, B[i] = B[i] +
B[i-2].
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Note that ’01’ can’t be decoded to ’1’. The DP equation shows below:{
B[i] = B[i] + B[i− 1] if A[i] ∈ [1, 9]

B[i] = B[i] + B[i− 2] if A[i− 1][A[i] ∈ [10, 26]

To summarize, we have the following algorithm.

DECODING(A)

1 B[0] = B[1] = 1
2 for i = 2 to n
3 B[i] = 0
4 if A[i] ∈ [1, 9]
5 B[i] = B[i] + B[i-1]
6 if A[i− 1]A[i] ∈ [10, 26]
7 B[i] = B[i] + B[i-2]
8 return B[n]

5.2 Correctness of the algorithm

We can use loop invariant to prove it.
Initialization: When i=1, as A is a valid encoded message, A[1] 6= 0, so there is

only one decoding way, so B[1]=1.
Maintenance: Given the number of decoding ways in A[1,...,i-2] and A[1,...,i-1],

say B[i-2] and B[i-1]. As for A[i], if A[i] ∈ [1, 9], A[i] can be decoded alone, B[i] = B[i-1];
if A[i− 1]A[i] ∈ [10, 26], A[i-1]A[i] can be decoded together, B[i] = B[i-2]. So we get the
number of decoding ways in A[1,...,i], algorithm holds for i.

Termination: B[n] is the number of decoding ways in A.

5.3 Complexity of the algorithm

According to the pseudo-code, we scan the array A once, so the time complexity is
O(n).

The size of array B equals to the size of array A, so the space complexity is O(n).
As B[i] only needs B[i-2] and B[i-1], so the space complexity can be optimized to O(1).

6 Maximum profit of transactions

6.1 Problem description

Let array A store the daily price of the stock, we can complete at most two trans-
actions to get the maximum profit.

Note, two transactions can’t overlap, you must buy first, sell first and buy second,
sell second.

Let B[i] be the maximum profit of one transaction among A[1,...,i], C[i] be the
maximum profit of another transaction among A[i,...,n], the maximum profit of two

transactions should be
n

max
i=1
{B[i] + C[i]}.

So, here is the problem, how to work out B[i] and C[i].
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As for B[i], we scan array A from 1 to n, let variable min price so far be the
minimum price so far and max profit so far be the maximum profit of one transac-
tion so far. Obviously, we have max profit so far = max{max profit so far, A[i] −
min price so far}. max profit so far is exactly B[i].

As for C[i], we scan array A from n to 1, similarly, we have C[i] = max{max profit
so far,max price so far − A[i]}.

To summarize, we have the following algorithm.

FIND-MAX-PROFIT(A)

1 min price so far = A[1]
2 B[1] = 0
3 for i = 2 to n
4 min price so far = min{min price so far, A[i]}
5 B[i] = max{B[i− 1], A[i]−min price so far}
6 max price so far = A[n]
7 C[n] = 0
8 for i = n-1 downto 1
9 max price so far = max{max price so far, A[i]}

10 C[i] = max{C[i + 1],max price so far − A[i]}
11 global max profit = 0
12 for i = 1 to n
13 global max profit = max{global max profit, B[i] + C[i]}
14 return global max profit

6.2 Implementation in C++

1 #inc lude<iostream>
2 #inc lude<fstream>
3 #inc lude<algor ithm>
4 us ing namespace std ;
5

6 const i n t MAXN = 100 ; // max records
7 i n t A[MAXN] ; // d a i l y p r i c e o f the s t o c k
8 i n t B[MAXN] ; // max p r o f i t among A[ 1 , . . . , i ]
9 i n t C[MAXN] ; // max p r o f i t among A[ i , . . . , n ]

10

11 i n t main ( )
12 {
13 f r eopen ( ” input . txt ” , ” r ” , s td in ) ;
14

15 i n t n = 1 ;
16 whi le (˜ s can f ( ”%d” , &A[ n ] ) )
17 n++;
18

19 i n t m i n p r i c e s o f a r = A[ 1 ] ;
20 B[ 1 ] = 0 ;
21 f o r ( i n t i = 2 ; i < n ; i++)
22 {
23 min p r i c e s o f a r = min ( m in p r i c e s o f a r , A[ i ] ) ;
24 B[ i ] = max(B[ i − 1 ] , A[ i ] − min p r i c e s o f a r ) ;
25 }
26

27 i n t max p r i c e s o f a r = A[ n − 1 ] ;
28 C[ n − 1 ] = 0 ;
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29 f o r ( i n t i = n − 2 ; i >= 1 ; i−−)
30 {
31 max pr i c e s o f a r = max( max pr i c e so f a r , A[ i ] ) ;
32 C[ i ] = max(C[ i + 1 ] , max p r i c e s o f a r − A[ i ] ) ;
33 }
34

35 i n t g l oba l max p ro f i t = 0 ;
36 f o r ( i n t i = 1 ; i < n ; i++)
37 g l oba l max p ro f i t = max( g l oba l max pro f i t , B[ i ] + C[ i ] ) ;
38 p r i n t f ( ”%d\n” , g l oba l max p ro f i t ) ;
39

40 re turn 0 ;
41 }

Sample input:
113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Sample output:
63

The figure of the sample data is showed above, we buy stock on day 3 and sell it on
day 4 and buy it on day 7 and sell it on day 11, earning a profit of (105-85)+(106-63)=63.

According to the pseudo-code, there are three for loops, so the time complexity is
O(n). As we need extra arrays B and C, so the space complexity is O(n) too.
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