Neural Networks and Deep Learning(七)番外篇·Pytorch MNIST教程

由于本书成书较早(2015),作者当时使用的是Theano,但Theano已不再维护,所以本博客使用当下流行的Pytorch框架讲解MNIST图片分类的代码实现,具体就是Pytorch官方给出的MNIST代码:https://github.com/pytorch/examples/tree/master/mnist。 使用该工具在线制作:http://alexlenail.me/NN-SVG/LeNet.html 下面,我首先贴出经过我注释的Pytorch MNIST代码,然后对一些关键问题进行解释。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 所有网络类要继承nn.Module class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 调用父类构造函数 self.conv1 = nn.Conv2d(1, 20, 5, 1) # (in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) self.conv2 = nn.Conv2d(20, 50, 5, 1) # 这一层的in_channels正好是上一层的out_channels self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) # kernel_size=2, stride=2,pooling之后的大小除以2 x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) # 展开成 (z, 4*4*50),其中z是通过自动推导得到的,所以这里设置为-1,这里相当于展开成行向量,便于后续全连接 x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) # log_softmax 即 log(softmax(x));dim=1对行进行softmax,因为上面x.view展开成行向量了,log_softmax速度和数值稳定性都比softmax好一些 def train(args, model, device, train_loader, optimizer, epoch): model.train() # 告诉pytorch,这是训练阶段 https://stackoverflow.com/a/51433411/2468587 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() # 每个batch的梯度重新累加 output = model(data) loss = F.nll_loss(output, target) # 这里的nll_loss就是Michael Nielsen在ch3提到的log-likelihood cost function,配合softmax使用,batch的梯度/loss要求均值mean loss.backward() # 求loss对参数的梯度dw optimizer.step() # 梯度下降,w'=w-η*dw if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(args, model, device, test_loader): model.eval() # 告诉pytorch,这是预测(评价)阶段 test_loss = 0 correct = 0 with torch.no_grad(): # 预测时不需要误差反传,https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615/2 for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss,预测时的loss求sum,L54再求均值 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def plot1digit(data_loader): import numpy as np import matplotlib.pyplot as plt examples = enumerate(data_loader) batch_idx, (Xs, ys) = next(examples) # 读取到的是一个batch的所有数据 X=Xs[0].numpy()[0] # Xs[0]取出batch中的第一个数据,由tensor转换为numpy,因为pytorch tensor的格式是[channel, height, width],所以最后[0]取出其第一个通道的[h,w] y=ys[0].numpy() # y没有通道,就一个标量值 np.savetxt('../../../fig/%d.csv'%y, X, delimiter=',') plt.imshow(X, cmap='Greys') # or 'Greys_r' plt.savefig('../../../fig/%d.png'%y) plt.show() def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ # https://discuss.pytorch.org/t/can-some-please-explain-how-the-transforms-work-and-why-normalize-the-data/2461/3 transforms.ToTensor(), # 把[0,255]的(H,W,C)的图片转换为[0,1]的(channel,height,width)的图片 transforms.Normalize((0.1307,), (0.3081,)) # 进行z-score标准化,这两个数分别是MNIST的均值和标准差 ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) # plot1digit(train_loader) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if (args.save_model): torch.save(model.state_dict(),"mnist_cnn.pt") if __name__ == '__main__': main() 首先是MNIST数据格式的问题,在L108~L120,我们使用Pytorch的DataLoader载入了训练和测试数据,数据格式本质上和本系列博客的第一篇博客介绍的是一致的,即每张图片都是28*28的灰度图片,因为是灰度图片,所以只有一个通道数,默认格式是(H,W,C),且值域范围是[0,255]。但上述代码对原始图片进行了两个变换,分别是ToTensor和Normalize。ToTensor将[0,255]的灰度图片(H,W,C)转换为[0,1]的灰度图片(C,H,W),即Pytorch对2D图片的格式要求都是channel在前。所以经过这一转换,一张图片的shape是(1,28,28),是一个三维矩阵;如果是彩色图片的话,有R,G,B三个通道,C=3。Normalize对图片数据进行z-score标准化,即减去均值再除以标准差;L112的两个值就是预先计算的MNIST数据集的均值和标准差。这些操作的好处是能让模型更加平稳快速收敛。同第一篇博客一样,我们可以把Pytorch格式的图片打印出来以便直观理解,L61的plot1digit函数就是这个作用。 ...

May 19, 2019 · 3 min

Neural Networks and Deep Learning(二)BP网络

这一讲介绍误差反向传播(backpropagation)网络,简称BP网络。 以上一讲介绍的MNIST手写数字图片分类问题为研究对象,首先明确输入输出:输入就是一张28×28的手写数字图片,展开后可以表示成一个长度为784的向量;输出可以表示为一个长度为10的one-hot向量,比如输入是一张“3”的图片,则输出向量为(0,0,0,1,0,0,0,0,0,0,0)。 然后构造一个如下的三层全连接网络。第一层为输入层,包含784个神经元,正好对应输入的一张28×28的图片。第二层为隐藏层,假设隐藏层有15个神经元。第三层为输出层,正好10个神经元,对应该图片的one-hot结果。 全连接网络表示上一层的每个神经元都和下一层的每个神经元有连接,即每个神经元的输入来自上一层所有神经元的输出,每个神经元的输出连接到下一层的所有神经元。每条连边上都有一个权重w。 每个神经元执行的操作非常简单,就是把跟它连接的每个输入乘以边上的权重,然后累加起来。 比如上面的一个神经元,它的输出就是: $$\begin{eqnarray}\mbox{output} = \left\{ \begin{array}{ll}0 & \mbox{if} \sum_j w_j x_j \leq \mbox{ threshold} \\1 & \mbox{if} \sum_j w_j x_j > \mbox{threshold}\end{array}\right.\tag{1}\end{eqnarray}$$其中的threshold就是该神经元激活的阈值,如果累加值超过threshold,则该神经元被激活,输出为1,否则为0。这就是最原始的感知机网络。感知机网络也可以写成如下的向量形式,用激活阈值b代替threshold,然后移到左边。神经网络中,每条边具有权重w,每个神经元具有激活阈值b。 $$\begin{eqnarray}\mbox{output} = \left\{ \begin{array}{ll} 0 & \mbox{if } w\cdot x + b \leq 0 \\1 & \mbox{if } w\cdot x + b > 0\end{array}\right.\tag{2}\end{eqnarray}$$ 但是感知机网络的这种激活方式不够灵活,它在threshold左右有一个突变,如果输入或者某个边上的权重稍微有一点变化,输出结果可能就千差万别了。于是后来人们提出了用sigmoid函数来当激活函数,它在0附近的斜率较大,在两边的斜率较小,能达到和阶梯函数类似的效果,而且函数光滑可导。sigmoid的函数形式如下,其中\(z\equiv w \cdot x + b\)为神经元激活之前的值。 $$\begin{eqnarray} \sigma(z) \equiv \frac{1}{1+e^{-z}}\tag{3}\end{eqnarray}$$sigmmoid函数还有一个优点就是它的导数很好计算,可以用它本身来表示: $$\begin{eqnarray}\sigma'(z)=\sigma(z)(1-\sigma(z))\tag{4}\end{eqnarray}$$BP网络的参数就是所有连线上的权重w和所有神经元中的激活阈值b,如果知道这些参数,给定一个输入x,则可以很容易的通过正向传播(feedforward)的方法计算到输出,即不断的执行\(w \cdot x + b\)操作,然后用sigmoid激活,再把上一层的输出传递给下一层作为输入,直到最后一层。 1 2 3 4 5 def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a 同时,网络的误差可以用均方误差(mean squared error, MSE)表示,即网络在最后一层的激活值(即网络的输出值)\(a\)和对应训练集输入\(x\)的正确答案\(y(x)\)的差的平方。有\(n\)个输入则误差取平均,\(\dfrac{1}{2}\)是为了后续求导方便。 ...

December 14, 2018 · 2 min

Neural Networks and Deep Learning(一)MNIST数据集介绍

最近开始学习神经网络和深度学习,使用的是网上教程:http://neuralnetworksanddeeplearning.com/,这是学习心得第一讲,介绍经典的MNIST手写数字图片数据集。 MNIST(Modified National Institute of Standards and Technology database)数据集改编自美国国家标准与技术研究所收集的更大的NIST数据集,该数据集来自250个不同人手写的数字图片,一半是人口普查局的工作人员,一半是高中生。该数据集包括60000张训练集图片和10000张测试集图片,训练集和测试集都提供了正确答案。每张图片都是28×28=784大小的灰度图片,也就是一个28×28的矩阵,里面每个值是一个像素点,值在[0,1]之间,0表示白色,1表示黑色,(0,1)之间表示不同的灰度。下面是该数据集中的一些手写数字图片,可以有一个感性的认识。 MNIST数据集可以在Yann LeCun的网站上下载到:http://yann.lecun.com/exdb/mnist/,但是他提供的MNIST数据集格式比较复杂,需要自己写代码进行解析。目前很多深度学习框架都自带了MNIST数据集,比较流行的是转换为pkl格式的版本:http://deeplearning.net/data/mnist/mnist.pkl.gz,该版本把原始的60000张训练集进一步划分成了50000张小训练集和10000张验证集,下面以这个版本为例进行介绍。 pkl是python内置的一种格式,可以将python的各种数据结构序列化存储到磁盘中,需要时又可以读取并反序列化到内存中。mnist.pkl.gz做了两次操作,先pkl序列化,再gz压缩存储,所以要读取该文件,需要先解压再反序列化,在python3中,读取mnist.pkl.gz的方式如下: 1 2 3 4 5 import pickle import gzip f = gzip.open(‘../data/mnist.pkl.gz’, ‘rb’) training_data, validation_data, test_data = pickle.load(f, encoding=’bytes’) f.close() 这样就得到了训练集、验证集和测试集。将数据集序列化到文件中的方法也很简单,需要注意的是pickle在序列化和反序列化时有不同的协议,可以用protocol参数进行设置。 1 2 3 4 dataset=[training_data, validation_data, test_data] f=gzip.open(‘../data/mnist3.pkl.gz’,’wb’) pickle.dump(dataset,f,protocol=3) f.close() 我们从mnist.pkl.gz读取到的training_data, validation_data, test_data这三个数据的结构是一样的,每个都是一个二维的tuple。以training_data为例,training_data[0]是训练样本,是一个50000×784的矩阵,表示有50000个训练样本,每个训练样本是一个784的一维数组,784就是把一张28×28的图片展开reshape成的一维数组;training_data[1]是训练样本对应的类标号,大小为50000的一维数组,每个值为0~9中的某个数,表示对应样本的数字标号。 ...

November 25, 2018 · 1 min