Tag Archives:

马尔可夫聚类算法

马尔可夫聚类算法(The Markov Cluster Algorithm, MCL)是一种快速可扩展的基于图的聚类算法。它的基本思想为:在一个稀疏图G中,如果某个区域A是稠密的(是一个聚类),则在A中随机游走k步,还在A内的概率很大,也就是说,A内的k步路径(k-length path)很多。所以我们可以在图中随机游走k步,如果某个区域连通的概率很大,则该区域是一个聚类。随机游走的下一步只和当前所处节点有关,也就是说这是一个马尔可夫的随机游走过程。

我们用一个例子来演示马尔可夫聚类算法的过程。

mcl-1 Continue reading