Tag Archives: End2End

CS224N(2.26)Coreference Resolution

今天介绍的内容是指代消解(Coreference Resolution)。指代(mention)是指句子中出现的名词、名词短语、代词等,指代消解就是把指向同一实体(entity)的指代聚类到一起的过程。比如下面的两句话,蓝色的词就是很多的指代,需要找出来哪些指代是指向同一个实体。比如Barack Obama、his、He都是指奥巴马。

下面的例子是比较简单的情况,事实上,在真实的语言中,情况更加复杂,比如有些指代可能表示多个实体。比如“他们”,可能同时指代了“小明”和“小王”,这种指代对于现在的NLP模型来说比较难,暂时不考虑。

Continue reading

CS224N(2.21)Transformers and Self-Attention For Generative Models

今天介绍大名鼎鼎的Transformer,它于2017年出自谷歌的论文《Attention Is All You Need》(https://arxiv.org/pdf/1706.03762.pdf),用Attention实现机器翻译模型,并取得了新的SOTA性能。

传统的机器翻译模型一般是结合RNN和Attention,可以看我之前的博客介绍:CS224N(1.31)Translation, Seq2Seq, Attention。虽然RNN+Attention的组合取得了不错的效果,但依然存在一些问题。由于RNN是序列依赖的模型,难以并行化,训练时间较长;且当句子很长时由于梯度消失难以捕捉长距离依赖关系。虽然相继推出的LSTM和GRU能一定程度上缓解梯度消失的问题,但这个问题依然存在。而且LSTM和GRU难以解释,我们根本不知道当前timestep依赖远的词多一点还是近的词多一点。

Transformer的思想很激进,它完全抛弃了RNN,只保留Attention,从其论文标题可见一斑。RNN无法并行化的根本原因是它的正向和反向传播是沿着句子方向(即水平方向),要想实现并行化,肯定不能再走水平方向了。于是,Transformer完全抛弃水平方向的RNN,而是在垂直方向上不断叠加Attention。由于每一层的Attention计算只和其前一层的Attention输出有关,所以当前层的所有词的Attention可以并行计算,互不干扰,这就使得Transformer可以利用GPU进行并行训练。

Continue reading

CS224N(1.31)Translation, Seq2Seq, Attention

今天介绍另一个NLP任务——机器翻译,以及神经网络机器翻译模型seq2seq和一个改进技巧attention。

机器翻译最早可追溯至1950s,由于冷战的需要,美国开始研制由俄语到英语的翻译机器。当时的机器翻译很简单,就是自动从词典中把对应的词逐个翻译出来。

后来在1990s~2010s,统计机器翻译(Statistical Machine Translation, SMT)大行其道。假设源语言是法语$x$,目标语言是英语$y$,机器翻译的目标就是寻找$y$,使得$P(y|x)$最大,也就是下图的公式。进一步,通过贝叶斯公式可拆分成两个概率的乘积:其中$P(y)$就是之前介绍过的语言模型,最简单的可以用n-gram的方法;$P(x|y)$是由目标语言到源语言的翻译模型。为什么要把$P(y|x)$的求解变成$P(x|y)*P(y)$?逐个击破的意思,$P(x|y)$专注于翻译模型,翻译好局部的短语或者单词;而$P(y)$就是之前学习的语言模型,用来学习整个句子$y$的概率,专注于翻译出来的句子从整体上看起来更加通顺、符合语法与逻辑。所以问题就转化为怎样求解$P(x|y)$。

Continue reading