Tag Archives: Attention

CS224N(2.21)Transformers and Self-Attention For Generative Models

今天介绍大名鼎鼎的Transformer,它于2017年出自谷歌的论文《Attention Is All You Need》(https://arxiv.org/pdf/1706.03762.pdf),用Attention实现机器翻译模型,并取得了新的SOTA性能。

传统的机器翻译模型一般是结合RNN和Attention,可以看我之前的博客介绍:CS224N(1.31)Translation, Seq2Seq, Attention。虽然RNN+Attention的组合取得了不错的效果,但依然存在一些问题。由于RNN是序列依赖的模型,难以并行化,训练时间较长;且当句子很长时由于梯度消失难以捕捉长距离依赖关系。虽然相继推出的LSTM和GRU能一定程度上缓解梯度消失的问题,但这个问题依然存在。而且LSTM和GRU难以解释,我们根本不知道当前timestep依赖远的词多一点还是近的词多一点。

Transformer的思想很激进,它完全抛弃了RNN,只保留Attention,从其论文标题可见一斑。RNN无法并行化的根本原因是它的正向和反向传播是沿着句子方向(即水平方向),要想实现并行化,肯定不能再走水平方向了。于是,Transformer完全抛弃水平方向的RNN,而是在垂直方向上不断叠加Attention。由于每一层的Attention计算只和其前一层的Attention输出有关,所以当前层的所有词的Attention可以并行计算,互不干扰,这就使得Transformer可以利用GPU进行并行训练。

Continue reading

CS224N(2.19)Contextual Word Embeddings

今天介绍几种新的词向量学习方法,在此之前,建议大家看看我关于word2vec或GloVe等传统词向量的介绍:CS224N(1.8)Introduction and Word Vectors

传统词向量,比如word2vec,它在训练阶段学习到一个词的向量表示之后,在下游的各种NLP任务中,这个词向量不再变动了。也就是说传统词向量的特点是,对一个词只学习一个词向量,且在具体任务中固定不变。传统词向量有两个主要的不足:

1. 难以表达一词多义。一个词在不同的上下文语境中可能表示不同的含义,比如“苹果”在“苹果真好吃”和“苹果手机很好用”这两个句子中表示不同的含义,但word2vec学习到的“苹果”词向量只有一个,也就是说下游任务对于这两个句子用的是同一个词向量。虽然word2vec的词向量可能同时包含了这两个含义,但它把这两个含义糅合到一个向量中了,导致在“苹果真好吃”中可能引入了“苹果手机”的干扰因素,在“苹果手机很好用”中引入了“吃的苹果”的干扰因素。总之就是,word2vec学习到的词向量粒度较粗,向量固定不变,无法根据具体的上下文语境进行改变。

2. 难以表达不同的语法或语义信息。一个词,即使是同一个意思,在语法或语义上也可能充当不同的角色,比如“活动”这个词,既可以做名词、也可以做动词,既可以做主语、也可以做谓语等。但word2vec对一个词只给出一个词向量,无论这个词在句子中充当什么角色,词向量都是一样的。虽然word2vec训练时可能已经学到了一个词的不同语法或语义特征,但它把这些信息糅合到一个向量中了,也就是粒度较粗的问题。

其实上述两点暴露出来的word2vec的不足,本质上是同样的两个原因:1. 词向量是静态的,无法根据上下文进行调整;2. 词向量表示只有一个向量,糅合了太多信息,粒度较粗。

Continue reading

CS224N(2.7)Question Answering

这节课的内容比较简单,是问答系统(Question Answering, QA)的入门介绍。

首先,为什么需要QA?目前各大搜索引擎对于一个查询,给出的都是一个结果列表。但是很多查询是一个问题,答案也往往比较确定,比如“现任美国总统是谁?”,此时,返回一堆结果列表就显得太过啰嗦了,尤其是在手机等移动设备上搜索时,简单的给出回答也许会更好一些。另一方面,智能手机上的助手如Siri、Google Now之类的,用户期望的也是简洁的答案,而不是一堆网页列表。

QA系统的组成主要有两个部分,一部分是根据问题检索到相关的文档,这部分是传统的信息检索的内容;另一部分是对检索到的文档进行阅读理解,抽取出能回答问题的答案,这部分就是本文要介绍的QA系统。

QA的历史可追溯到上世纪七十年代,但真正取得突破性进展也就是最近几年。2015/2016年,几个大规模QA标注数据集的发表,极大的推动了这个领域的发展。这其中比较有名的数据集是斯坦福大学发布的Stanford Question Answering Dataset (SQuAD)。

Continue reading

CS224N(1.31)Translation, Seq2Seq, Attention

今天介绍另一个NLP任务——机器翻译,以及神经网络机器翻译模型seq2seq和一个改进技巧attention。

机器翻译最早可追溯至1950s,由于冷战的需要,美国开始研制由俄语到英语的翻译机器。当时的机器翻译很简单,就是自动从词典中把对应的词逐个翻译出来。

后来在1990s~2010s,统计机器翻译(Statistical Machine Translation, SMT)大行其道。假设源语言是法语$x$,目标语言是英语$y$,机器翻译的目标就是寻找$y$,使得$P(y|x)$最大,也就是下图的公式。进一步,通过贝叶斯公式可拆分成两个概率的乘积:其中$P(y)$就是之前介绍过的语言模型,最简单的可以用n-gram的方法;$P(x|y)$是由目标语言到源语言的翻译模型。为什么要把$P(y|x)$的求解变成$P(x|y)*P(y)$?逐个击破的意思,$P(x|y)$专注于翻译模型,翻译好局部的短语或者单词;而$P(y)$就是之前学习的语言模型,用来学习整个句子$y$的概率,专注于翻译出来的句子从整体上看起来更加通顺、符合语法与逻辑。所以问题就转化为怎样求解$P(x|y)$。

Continue reading