Tag Archives: LeNet-5

Neural Networks and Deep Learning(六)深度学习

今天我们终于进入到了本书的重头戏——深度学习。其实,这一章的深度学习主要介绍的是卷积神经网络,即CNN。

本书之前的章节介绍的都是如下图的全连接网络,虽然全连接网络已经能够在MNIST数据集上取得98%以上的测试准确率,但有两个比较大的缺点:1. 训练参数太多,容易过拟合;2. 难以捕捉图片的局部信息。第一点很好理解,参数一多,网络就难以训练,难以加深。对于第二点,因为全连接的每个神经元都和上一层的所有神经元相连,无论距离远近,也就是说网络不会捕捉图片的局部信息和空间结构信息。

Continue reading