由于本书成书较早(2015),作者当时使用的是Theano,但Theano已不再维护,所以本博客使用当下流行的Pytorch框架讲解MNIST图片分类的代码实现,具体就是Pytorch官方给出的MNIST代码:
https://github.com/pytorch/examples/tree/master/mnist。
Tag Archives: MNIST
Neural Networks and Deep Learning(二)BP网络
这一讲介绍误差反向传播(backpropagation)网络,简称BP网络。
以上一讲介绍的MNIST手写数字图片分类问题为研究对象,首先明确输入输出:输入就是一张28×28的手写数字图片,展开后可以表示成一个长度为784的向量;输出可以表示为一个长度为10的one-hot向量,比如输入是一张“3”的图片,则输出向量为(0,0,0,1,0,0,0,0,0,0,0)。
然后构造一个如下的三层全连接网络。第一层为输入层,包含784个神经元,正好对应输入的一张28×28的图片。第二层为隐藏层,假设隐藏层有15个神经元。第三层为输出层,正好10个神经元,对应该图片的one-hot结果。
全连接网络表示上一层的每个神经元都和下一层的每个神经元有连接,即每个神经元的输入来自上一层所有神经元的输出,每个神经元的输出连接到下一层的所有神经元。每条连边上都有一个权重w。
Continue readingNeural Networks and Deep Learning(一)MNIST数据集介绍
最近开始学习神经网络和深度学习,使用的是网上教程:http://neuralnetworksanddeeplearning.com/,这是学习心得第一讲,介绍经典的MNIST手写数字图片数据集。
MNIST(Modified National Institute of Standards and Technology database)数据集改编自美国国家标准与技术研究所收集的更大的NIST数据集,该数据集来自250个不同人手写的数字图片,一半是人口普查局的工作人员,一半是高中生。该数据集包括60000张训练集图片和10000张测试集图片,训练集和测试集都提供了正确答案。每张图片都是28×28=784大小的灰度图片,也就是一个28×28的矩阵,里面每个值是一个像素点,值在[0,1]之间,0表示白色,1表示黑色,(0,1)之间表示不同的灰度。下面是该数据集中的一些手写数字图片,可以有一个感性的认识。